forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00235

 Article overview

Minimizing Change-Point Estimation Error
Hock Peng Chan ;
Date 1 Feb 2023
AbstractIn this paper we consider change-points in multiple sequences with the objective of minimizing the estimation error of a sequence by making use of information from other sequences. This is in contrast to recent interest on change-points in multiple sequences where the focus is on detection of common change-points. We start with the canonical case of a single sequence with constant change-point intensities. We consider two measures of a change-point algorithm. The first is the probability of estimating the change-point with no error. The second is the expected distance between the true and estimated change-points. We provide a theoretical upper bound for the no error probability, and a lower bound for the expected distance, that must be satisfied by all algorithms. We propose a scan-CUSUM algorithm that achieves the no error upper bound and come close to the distance lower bound. We next consider the case of non-constant intensities and establish sharp conditions under which estimation error can go to zero. We propose an extension of the scan-CUSUM algorithm for a non-constant intensity function, and show that it achieves asymptotically zero error at the boundary of the zero-error regime. We illustrate an application of the scan-CUSUM algorithm on multiple sequences sharing an unknown, non-constant intensity function. We estimate the intensity function from the change-point profile likelihoods of all sequences and apply scan-CUSUM on the estimated intensity function.
Source arXiv, 2302.00235
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica