Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

13 December 2024
 
  » arxiv » 2302.00245

 Article overview



Convergence of a quantum lattice Boltzmann scheme to the nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions
Ningning Li ; Jing Zhang ; Yongqian Zhang ;
Date 1 Feb 2023
AbstractThis paper studies the quantum lattice Boltzmann scheme for the nonlinear Dirac equations for Gross-Neveu model in $1+1$ dimensions. The initial data for the scheme are assumed to be convergent in $L^2$. Then for any $Tge 0$ the corresponding solutions for the quantum lattice Boltzmann scheme are shown to be convergent in $C([0,T];L^2(R^1))$ to the strong solution to the nonlinear Dirac equations as the mesh sizes converge to zero. In the proof, at first a Glimm type functional is introduced to establish the stability estimates for the difference between two solutions for the corresponding quantum lattice Boltzmann scheme, which leads to the compactness of the set of the solutions for the quantum lattice Boltzmann scheme. Finally, the limit of any convergent subsequence of the solutions for the quantum lattice Boltzmann scheme is shown to coincide with the strong solution to a Cauchy problem for the nonlinear Dirac equations.
Source arXiv, 2302.00245
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica