forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00273

 Article overview

Hardness of braided quantum circuit optimization in the surface code
Kunihiro Wasa ; Shin Nishio ; Koki Suetsugu ; Michael Hanks ; Ashley Stephens ; Yu Yokoi ; Kae Nemoto ;
Date 1 Feb 2023
AbstractLarge-scale quantum information processing requires the use of quantum error correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits. Procedures such as defect braiding and lattice surgery can then be used to realize a fault-tolerant universal set of gates on the logical space of such topological codes. However, error correction also introduces a significant overhead in computation time, the number of physical qubits, and the number of physical gates. While optimizing fault-tolerant circuits to minimize this overhead is critical, the computational complexity of such optimization problems remains unknown. This ambiguity leaves room for doubt surrounding the most effective methods for compiling fault-tolerant circuits for a large-scale quantum computer. In this paper, we show that the optimization of a special subset of braided quantum circuits is NP-hard by a polynomial-time reduction of the optimization problem into a specific problem called Planar Rectilinear 3SAT.
Source arXiv, 2302.00273
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica