Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3650
Articles: 2'539'461
Articles rated: 2609

14 June 2024
 
  » arxiv » 2302.00274

 Article overview



Identifying the SN 2022acko progenitor with JWST
Schuyler D. Van Dyk ; K. Azalee Bostroem ; Jennifer E. Andrews ; Yize Dong ; Alexei V. Filippenko ; Ori D. Fox ; Emily Hoang ; Griffin Hosseinzadeh ; Daryl Janzen ; Jacob E. Jencson ; Michael J. Lundquist ; Nicolas Meza ; Dan Milisavljevic ; Jeniveve Pearson ; David J. Sand ; Manisha Shrestha ; Stefano Valenti ; D. Andrew Howell ;
Date 1 Feb 2023
AbstractWe report analysis using the James Webb Space Telescope (JWST) to identify a candidate progenitor star of the Type II-plateau supernova SN 2022acko in the nearby, barred spiral galaxy NGC 1300. To our knowledge, our discovery represents the first time JWST has been used to localize a progenitor system in pre-explosion archival Hubble Space Telescope (HST) images. We astrometrically registered a JWST NIRCam image from 2023 January, in which the SN was serendipitously captured, to pre-SN HST F160W and F814W images from 2017 and 2004, respectively. A star corresponding precisely to the SN position has been isolated with reasonable confidence, although a ~2.9 sigma difference exists between the measured position for the star from HST and the transformed SN position from JWST. That star has a spectral energy distribution and overall luminosity consistent with a single-star model having an initial mass somewhat less than the canonical 8 Msun theoretical threshold for core collapse, although the star’s initial mass is inconsistent with that of a super-asymptotic giant branch star which might be a forerunner of an electron-capture SN. The properties of the progenitor alone imply that SN 2022acko is a relatively normal SN II-P, albeit most likely a low-luminosity one. The progenitor candidate should be confirmed with follow-up HST imaging at late times, when the SN has sufficiently faded. This potential use of JWST opens a new era of identifying SN progenitor candidates at high spatial resolution.
Source arXiv, 2302.00274
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica