forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00288

 Article overview

CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models
Hao Yu ; Bo Shen ; Dezhi Ran ; Jiaxin Zhang ; Qi Zhang ; Yuchi Ma ; Guangtai Liang ; Ying Li ; Tao Xie ; Qianxiang Wang ;
Date 1 Feb 2023
AbstractCode generation models based on the pre-training and fine-tuning paradigm have been increasingly attempted by both academia and industry, resulting in well-known industrial models such as Codex, CodeGen, and PanGu-Coder. To validate the performance of these models, multiple existing benchmarks (e.g., AiXBench and HumanEval) are proposed, including only cases of generating a standalone function, i.e., a function that invokes or accesses only built-in functions and standard libraries. However, standalone functions constitute only about 30\% of functions from real open-source projects. To assess a model’s performance for pragmatic code generation (i.e., code generation for real settings of open source or proprietary code), in this paper, we propose a benchmark named CoderEval of pragmatic code generation with generative pre-trained models. Compared with the widely-used HumanEval benchmark from OpenAI, CoderEval can be used to assess the performance of models against pragmatic code generation beyond just generating standalone functions. Through the evaluation of three public available models (CodeGen, PanGu-Coder, and Codex) on CoderEval, we analyze and discuss the current progress and future directions of pragmatic code generation with a generative pre-trained model.
Source arXiv, 2302.00288
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica