forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00299

 Article overview

Learning from Stochastic Labels
Meng Wei ; Zhongnian Li ; Yong Zhou ; Qiaoyu Guo ; Xinzheng Xu ;
Date 1 Feb 2023
AbstractAnnotating multi-class instances is a crucial task in the field of machine learning. Unfortunately, identifying the correct class label from a long sequence of candidate labels is time-consuming and laborious. To alleviate this problem, we design a novel labeling mechanism called stochastic label. In this setting, stochastic label includes two cases: 1) identify a correct class label from a small number of randomly given labels; 2) annotate the instance with None label when given labels do not contain correct class label. In this paper, we propose a novel suitable approach to learn from these stochastic labels. We obtain an unbiased estimator that utilizes less supervised information in stochastic labels to train a multi-class classifier. Additionally, it is theoretically justifiable by deriving the estimation error bound of the proposed method. Finally, we conduct extensive experiments on widely-used benchmark datasets to validate the superiority of our method by comparing it with existing state-of-the-art methods.
Source arXiv, 2302.00299
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica