Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00302

 Article overview



A Deep Behavior Path Matching Network for Click-Through Rate Prediction
Jian Dong ; Yisong Yu ; Yapeng Zhang ; Yimin Lv ; Shuli Wang ; Beihong Jin ; Yongkang Wang ; Xingxing Wang ; Dong Wang ;
Date 1 Feb 2023
AbstractUser behaviors on an e-commerce app not only contain different kinds of feedback on items but also sometimes imply the cognitive clue of the user’s decision-making. For understanding the psychological procedure behind user decisions, we present the behavior path and propose to match the user’s current behavior path with historical behavior paths to predict user behaviors on the app. Further, we design a deep neural network for behavior path matching and solve three difficulties in modeling behavior paths: sparsity, noise interference, and accurate matching of behavior paths. In particular, we leverage contrastive learning to augment user behavior paths, provide behavior path self-activation to alleviate the effect of noise, and adopt a two-level matching mechanism to identify the most appropriate candidate. Our model shows excellent performance on two real-world datasets, outperforming the state-of-the-art CTR model. Moreover, our model has been deployed on the Meituan food delivery platform and has accumulated 1.6% improvement in CTR and 1.8% improvement in advertising revenue.
Source arXiv, 2302.00302
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica