forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00303

 Article overview

Specular electron focusing between gate-defined quantum point contacts in bilayer graphene
Josep Ingla-Aynés ; Antonio L. R. Manesco ; Talieh S. Ghiasi ; Serhii Volosheniuk ; Kenji Watanabe ; Takashi Taniguchi ; Herre S. J. van der Zant ;
Date 1 Feb 2023
AbstractWe report on multiterminal measurements in a ballistic bilayer graphene (BLG) channel where multiple spin and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes and along different crystallographic directions, we study the effect of size quantization and trigonal warping on the transverse electron focusing (TEF) spectra. Our TEF spectra show eight clear peaks with comparable amplitude and weak signatures of quantum interference at the lowest temperature, indicating that reflections at the gate-defined edges are specular and transport is phase coherent. The temperature dependence of the scattering rate indicates that electron-electron interactions play a dominant role in the charge relaxation process for electron doping and temperatures below 100 K. The achievement of specular reflection, which is expected to preserve the pseudospin information of the electron jets, is promising for the realization of ballistic interconnects for new valleytronic devices.
Source arXiv, 2302.00303
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica