Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00347

 Article overview



Anderson Acceleration For Bioinformatics-Based Machine Learning
Sarwan Ali ; Prakash Chourasia ; Murray Patterson ;
Date 1 Feb 2023
AbstractAnderson acceleration (AA) is a well-known method for accelerating the convergence of iterative algorithms, with applications in various fields including deep learning and optimization. Despite its popularity in these areas, the effectiveness of AA in classical machine learning classifiers has not been thoroughly studied. Tabular data, in particular, presents a unique challenge for deep learning models, and classical machine learning models are known to perform better in these scenarios. However, the convergence analysis of these models has received limited attention. To address this gap in research, we implement a support vector machine (SVM) classifier variant that incorporates AA to speed up convergence. We evaluate the performance of our SVM with and without Anderson acceleration on several datasets from the biology domain and demonstrate that the use of AA significantly improves convergence and reduces the training loss as the number of iterations increases. Our findings provide a promising perspective on the potential of Anderson acceleration in the training of simple machine learning classifiers and underscore the importance of further research in this area. By showing the effectiveness of AA in this setting, we aim to inspire more studies that explore the applications of AA in classical machine learning.
Source arXiv, 2302.00347
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica