forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00353

 Article overview

Towards Label-Efficient Incremental Learning: A Survey
Mert Kilickaya ; Joost van de Weijer ; Yuki M. Asano ;
Date 1 Feb 2023
AbstractThe current dominant paradigm when building a machine learning model is to iterate over a dataset over and over until convergence. Such an approach is non-incremental, as it assumes access to all images of all categories at once. However, for many applications, non-incremental learning is unrealistic. To that end, researchers study incremental learning, where a learner is required to adapt to an incoming stream of data with a varying distribution while preventing forgetting of past knowledge. Significant progress has been made, however, the vast majority of works focus on the fully supervised setting, making these algorithms label-hungry thus limiting their real-life deployment. To that end, in this paper, we make the first attempt to survey recently growing interest in label-efficient incremental learning. We identify three subdivisions, namely semi-, few-shot- and self-supervised learning to reduce labeling efforts. Finally, we identify novel directions that can further enhance label-efficiency and improve incremental learning scalability. Project website: {this https URL.
Source arXiv, 2302.00353
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica