forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00370

 Article overview

How to select predictive models for causal inference?
Doutreligne Matthieu ; Varoquaux Gaël ;
Date 1 Feb 2023
AbstractPredictive models -- as with machine learning -- can underpin causal inference, to estimate the effects of an intervention at the population or individual level. This opens the door to a plethora of models, useful to match the increasing complexity of health data, but also the Pandora box of model selection: which of these models yield the most valid causal estimates? Classic machine-learning cross-validation procedures are not directly applicable. Indeed, an appropriate selection procedure for causal inference should equally weight both outcome errors for each individual, treated or not treated, whereas one outcome may be seldom observed for a sub-population. We study how more elaborate risks benefit causal model selection. We show theoretically that simple risks are brittle to weak overlap between treated and non-treated individuals as well as to heterogeneous errors between populations. Rather a more elaborate metric, the R-risk appears as a proxy of the oracle error on causal estimates, observable at the cost of an overlap re-weighting. As the R-risk is defined not only from model predictions but also by using the conditional mean outcome and the treatment probability, using it for model selection requires adapting cross validation. Extensive experiments show that the resulting procedure gives the best causal model selection.
Source arXiv, 2302.00370
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica