Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » 2309.00168

 Article overview



Pose-Graph Attentional Graph Neural Network for Lidar Place Recognition
Milad Ramezani ; Liang Wang ; Joshua Knights ; Zhibin Li ; Pauline Pounds ; Peyman Moghadam ;
Date 1 Sep 2023
AbstractThis paper proposes a lidar place recognition approach, called P-GAT, to increase the receptive field between point clouds captured over time. Instead of comparing pairs of point clouds, we compare the similarity between sets of point clouds to use the maximum spatial and temporal information between neighbour clouds utilising the concept of pose-graph SLAM. Leveraging intra- and inter-attention and graph neural network, P-GAT relates point clouds captured in nearby locations in Euclidean space and their embeddings in feature space. Experimental results on the large-scale publically available datasets demonstrate the effectiveness of our approach in recognising scenes lacking distinct features and when training and testing environments have different distributions (domain adaptation). Further, an exhaustive comparison with the state-of-the-art shows improvements in performance gains. Code will be available upon acceptance.
Source arXiv, 2309.00168
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica