Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

17 January 2025
 
  » arxiv » 2309.00223

 Article overview



The FruitShell French synthesis system at the Blizzard 2023 Challenge
Xin Qi ; Xiaopeng Wang ; Zhiyong Wang ; Wang Liu ; Mingming Ding ; Shuchen Shi ;
Date 1 Sep 2023
AbstractThis paper presents a French text-to-speech synthesis system for the Blizzard Challenge 2023. The challenge consists of two tasks: generating high-quality speech from female speakers and generating speech that closely resembles specific individuals. Regarding the competition data, we conducted a screening process to remove missing or erroneous text data. We organized all symbols except for phonemes and eliminated symbols that had no pronunciation or zero duration. Additionally, we added word boundary and start/end symbols to the text, which we have found to improve speech quality based on our previous experience. For the Spoke task, we performed data augmentation according to the competition rules. We used an open-source G2P model to transcribe the French texts into phonemes. As the G2P model uses the International Phonetic Alphabet (IPA), we applied the same transcription process to the provided competition data for standardization. However, due to compiler limitations in recognizing special symbols from the IPA chart, we followed the rules to convert all phonemes into the phonetic scheme used in the competition data. Finally, we resampled all competition audio to a uniform sampling rate of 16 kHz. We employed a VITS-based acoustic model with the hifigan vocoder. For the Spoke task, we trained a multi-speaker model and incorporated speaker information into the duration predictor, vocoder, and flow layers of the model. The evaluation results of our system showed a quality MOS score of 3.6 for the Hub task and 3.4 for the Spoke task, placing our system at an average level among all participating teams.
Source arXiv, 2309.00223
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica