Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » 2309.00318

 Article overview



Gas phase Elemental abundances in Molecular cloudS (GEMS). IX. Deuterated compounds of H2S in starless cores
Marina Rodríguez-Baras ; Gisela Esplugues ; Asunción Fuente ; Silvia Spezzano ; Paola Caselli ; Jean-Christophe Loison ; Evelyne Roueff ; David Navarro-Almaida ; Rafael Bachiller ; Rafael Martín-Doménech ; Izaskun Jiménez-Serra ; Leire Beitia-Antero ; Romane Le Gal ;
Date 1 Sep 2023
AbstractH2S is thought to be the main sulphur reservoir in the ice, being therefore a key molecule to understand sulphur chemistry in the star formation process and to solve the missing sulphur problem. The H2S deuterium fraction can be used to constrain its formation pathways. We investigate for the first time the H2S deuteration in a large sample of starless cores (SC). We use observations of the GEMS IRAM 30m Large Program and complementary IRAM 30m observations. We consider a sample of 19 SC in Taurus, Perseus, and Orion, detecting HDS in 10 and D2S in five. The H2S single and double deuterium fractions are analysed with regard to their relation with the cloud physical parameters, their comparison with other interstellar sources, and their comparison with deuterium fractions in early stage star-forming sources of c-C3H2, H2CS, H2O, H2CO, and CH3OH. We obtain a range of X(HDS)/X(H2S)~0.025-0.2 and X(D2S)/X(HDS)~0.05-0.3. H2S single deuteration shows an inverse relation with the cloud kinetic temperature. H2S deuteration values in SC are similar to those observed in Class 0. Comparison with other molecules in other sources reveals a general trend of decreasing deuteration with increasing temperature. In SC and Class 0 objects H2CS and H2CO present higher deuteration fractions than c-C3H2, H2S, H2O, and CH3OH. H2O shows single and double deuteration values one order of magnitude lower than those of H2S and CH3OH. Differences between c-C3H2, H2CS and H2CO deuterium fractions and those of H2S, H2O, and CH3OH are related to deuteration processes produced in gas or solid phases, respectively. We interpret the differences between H2S and CH3OH deuterations and that of H2O as a consequence of differences on the formation routes in the solid phase, particularly in terms of the different occurrence of the D-H and H-D substitution reactions in the ice, together with the chemical desorption processes.
Source arXiv, 2309.00318
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica