| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
23 January 2025 |
|
| | | |
|
Article overview
| |
|
An Edge-based Interface Tracking (EBIT) Method for Multiphase-flows Simulation with Surface Tension | Jieyun Pan
; Tian Long
; Leonardo Chirco
; Ruben Scardovelli
; Stéphane Popinet
; Stéphane Zaleski
; | Date: |
1 Sep 2023 | Abstract: | We present a novel Front-Tracking method, the Edge-Based Interface Tracking
(EBIT) method for multiphase flow simulations. In the EBIT method, the markers
are located on the grid edges and the interface can be reconstructed without
storing the connectivity of the markers. This feature makes the process of
marker addition or removal easier than in the traditional Front-Tracking
method. The EBIT method also allows almost automatic parallelization due to the
lack of explicit connectivity.
In a previous journal article we have presented the kinematic part of the
EBIT method, that includes the algorithms for interface linear reconstruction
and advection. Here, we complete the presentation of the EBIT method and
combine the kinematic algorithm with a Navier--Stokes solver. To identify the
reference phase and to distinguish ambiguous topological configurations, we
introduce a new feature: the Color Vertex. For the coupling with the
Navier--Stokes equations, we first calculate volume fractions from the position
of the markers and the Color Vertex, then viscosity and density fields from the
computed volume fractions and finally surface tension stresses with the
Height-Function method. In addition, an automatic topology change algorithm is
implemented into the EBIT method, making it possible the simulation of more
complex flows. A two-dimensional version of the EBIT method has been
implemented in the open-source Basilisk platform, and validated with five
standard test cases: (1) translation with uniform velocity, (2) single vortex,
(3) capillary wave, (4) Rayleigh-Taylor instability and (5) rising bubble. The
results are compared with those obtained with the Volume-of-Fluid (VOF) method
already implemented in Basilisk. | Source: | arXiv, 2309.00338 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|