Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » 2309.00347

 Article overview



Towards Contrastive Learning in Music Video Domain
Karel Veldkamp ; Mariya Hendriksen ; Zoltán Szlávik ; Alexander Keijser ;
Date 1 Sep 2023
AbstractContrastive learning is a powerful way of learning multimodal representations across various domains such as image-caption retrieval and audio-visual representation learning. In this work, we investigate if these findings generalize to the domain of music videos. Specifically, we create a dual en-coder for the audio and video modalities and train it using a bidirectional contrastive loss. For the experiments, we use an industry dataset containing 550 000 music videos as well as the public Million Song Dataset, and evaluate the quality of learned representations on the downstream tasks of music tagging and genre classification. Our results indicate that pre-trained networks without contrastive fine-tuning outperform our contrastive learning approach when evaluated on both tasks. To gain a better understanding of the reasons contrastive learning was not successful for music videos, we perform a qualitative analysis of the learned representations, revealing why contrastive learning might have difficulties uniting embeddings from two modalities. Based on these findings, we outline possible directions for future work. To facilitate the reproducibility of our results, we share our code and the pre-trained model.
Source arXiv, 2309.00347
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica