| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
25 January 2025 |
|
| | | |
|
Article overview
| |
|
MuraNet: Multi-task Floor Plan Recognition with Relation Attention | Lingxiao Huang
; Jung-Hsuan Wu
; Chiching Wei
; Wilson Li
; | Date: |
1 Sep 2023 | Abstract: | The recognition of information in floor plan data requires the use of
detection and segmentation models. However, relying on several single-task
models can result in ineffective utilization of relevant information when there
are multiple tasks present simultaneously. To address this challenge, we
introduce MuraNet, an attention-based multi-task model for segmentation and
detection tasks in floor plan data. In MuraNet, we adopt a unified encoder
called MURA as the backbone with two separated branches: an enhanced
segmentation decoder branch and a decoupled detection head branch based on
YOLOX, for segmentation and detection tasks respectively. The architecture of
MuraNet is designed to leverage the fact that walls, doors, and windows usually
constitute the primary structure of a floor plan’s architecture. By jointly
training the model on both detection and segmentation tasks, we believe MuraNet
can effectively extract and utilize relevant features for both tasks. Our
experiments on the CubiCasa5k public dataset show that MuraNet improves
convergence speed during training compared to single-task models like U-Net and
YOLOv3. Moreover, we observe improvements in the average AP and IoU in
detection and segmentation tasks, respectively.Our ablation experiments
demonstrate that the attention-based unified backbone of MuraNet achieves
better feature extraction in floor plan recognition tasks, and the use of
decoupled multi-head branches for different tasks further improves model
performance. We believe that our proposed MuraNet model can address the
disadvantages of single-task models and improve the accuracy and efficiency of
floor plan data recognition. | Source: | arXiv, 2309.00348 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|