Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

17 January 2025
 
  » arxiv » 2309.00384

 Article overview



BatchPrompt: Accomplish more with less
Jianzhe Lin ; Maurice Diesendruck ; Liang Du ; Robin Abraham ;
Date 1 Sep 2023
AbstractMany LLMs are trained to perform zero-shot or few-shot inference using instruction-based prompts. Crafting prompts for these LLMs typically requires the user to provide a detailed task description, examples of context and completion, and single example of context for inference. This regular prompt baseline is referred to as SinglePrompt in this paper. However, for NLP tasks where each data point for inference is not necessarily lengthy, the token count for instructions and few-shot examples in the prompt may be considerably larger than that of the data point, resulting in lower token-resource utilization compared with encoder-based models like fine-tuned BERT. This cost-efficiency issue, affecting inference speed and compute budget, counteracts the many benefits LLMs have to offer. This paper aims to alleviate the preceding problem by batching multiple data points into a single prompt, a prompting strategy we refer to as BatchPrompt. This strategy increases the density of data points, which in turn leads to improved token utilization. Applying BatchPrompt naively, however, is very challenging due to significant performance degradation, as observed in our experiments. We also noticed varying inference outcomes for the same data point appearing in different positions within a prompt. To address the quality issue while remain high token-resource utilization, we introduce Batch Permutation and Ensembling for BatchPrompt, a simple way that recovers labeling quality through majority votes from data points placed in varying positions in a batch at the price of more token usage. To counterbalance the additional token usage caused by the voting process, we further propose Self-reflection-guided EArly Stopping, which can terminate the voting process early for data points the LLM confidently handles.
Source arXiv, 2309.00384
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica