Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » 2309.00397

 Article overview



Learning the tensor network model of a quantum state using a few single-qubit measurements
Sergei S. Kuzmin ; Varvara I. Mikhailova ; Ivan V. Dyakonov ; Stanislav S. Straupe ;
Date 1 Sep 2023
AbstractThe constantly increasing dimensionality of artificial quantum systems demands for highly efficient methods for their characterization and benchmarking. Conventional quantum tomography fails for larger systems due to the exponential growth of the required number of measurements. The conceptual solution for this dimensionality curse relies on a simple idea - a complete description of a quantum state is excessive and can be discarded in favor of experimentally accessible information about the system. The probably approximately correct (PAC) learning theory has been recently successfully applied to a problem of building accurate predictors for the measurement outcomes using a dataset which scales only linearly with the number of qubits. Here we present a constructive and numerically efficient protocol which learns a tensor network model of an unknown quantum system. We discuss the limitations and the scalability of the proposed method.
Source arXiv, 2309.00397
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica