Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » 2309.00416

 Article overview



Advancing Personalized Federated Learning: Group Privacy, Fairness, and Beyond
Filippo Galli ; Kangsoo Jung ; Sayan Biswas ; Catuscia Palamidessi ; Tommaso Cucinotta ;
Date 1 Sep 2023
AbstractFederated learning (FL) is a framework for training machine learning models in a distributed and collaborative manner. During training, a set of participating clients process their data stored locally, sharing only the model updates obtained by minimizing a cost function over their local inputs. FL was proposed as a stepping-stone towards privacy-preserving machine learning, but it has been shown vulnerable to issues such as leakage of private information, lack of personalization of the model, and the possibility of having a trained model that is fairer to some groups than to others. In this paper, we address the triadic interaction among personalization, privacy guarantees, and fairness attained by models trained within the FL framework. Differential privacy and its variants have been studied and applied as cutting-edge standards for providing formal privacy guarantees. However, clients in FL often hold very diverse datasets representing heterogeneous communities, making it important to protect their sensitive information while still ensuring that the trained model upholds the aspect of fairness for the users. To attain this objective, a method is put forth that introduces group privacy assurances through the utilization of $d$-privacy (aka metric privacy). $d$-privacy represents a localized form of differential privacy that relies on a metric-oriented obfuscation approach to maintain the original data’s topological distribution. This method, besides enabling personalized model training in a federated approach and providing formal privacy guarantees, possesses significantly better group fairness measured under a variety of standard metrics than a global model trained within a classical FL template. Theoretical justifications for the applicability are provided, as well as experimental validation on real-world datasets to illustrate the working of the proposed method.
Source arXiv, 2309.00416
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica