Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

17 January 2025
 
  » arxiv » 2309.00423

 Article overview



Strong solutions for the Navier-Stokes-Voigt equations with non-negative density
Hermenegildo Borges de Oliveira ; Khonatbek Khompysh ; Aidos Ganizhanuly Shakir ;
Date 1 Sep 2023
AbstractThe aim of this work is to study the Navier-Stokes-Voigt equations that govern flows with non-negative density of incompressible fluids with elastic properties. For the associated non-linear initial-and boundary-value problem, we prove the global-in-time existence of strong solutions (velocity, density and pressure). We also establish some other regularity properties of these solutions and find the conditions that guarantee the uniqueness of velocity and density. The main novelty of this work is the hypothesis that, in some subdomain of space, there may be a vacuum at the initial moment, that is, the possibility of the initial density vanishing in some part of the space domain.
Source arXiv, 2309.00423
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica