Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

17 January 2025
 
  » arxiv » 2309.00426

 Article overview



A lattice on Dyck paths close to the Tamari lattice
Jean-Luc Baril ; Sergey Kirgizov ; Mehdi Naima ;
Date 1 Sep 2023
AbstractWe introduce a new poset structure on Dyck paths where the covering relation is a particular case of the relation inducing the Tamari lattice. We prove that the transitive closure of this relation endows Dyck paths with a lattice structure. We provide a trivariate generating function counting the number of Dyck paths with respect to the semilength, the numbers of outgoing and incoming edges in the Hasse diagram. We deduce the numbers of coverings, meet and join irreducible elements. As a byproduct, we present a new involution on Dyck paths that transports the bistatistic of the numbers of outgoing and incoming edges into its reverse. Finally, we give a generating function for the number of intervals, and we compare this number with the number of intervals in the Tamari lattice.
Source arXiv, 2309.00426
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica