| | |
| | |
Stat |
Members: 3669 Articles: 2'599'751 Articles rated: 2609
22 March 2025 |
|
| | | |
|
Article overview
| |
|
Federated Natural Policy Gradient Methods for Multi-task Reinforcement Learning | Tong Yang
; Shicong Cen
; Yuting Wei
; Yuxin Chen
; Yuejie Chi
; | Date: |
1 Nov 2023 | Abstract: | Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories. In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment. Focusing on infinite-horizon tabular Markov decision processes, the goal is to learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner, where each agent only communicates with its neighbors over some prescribed graph topology. We develop federated vanilla and entropy-regularized natural policy gradient (NPG) methods under softmax parameterization, where gradient tracking is applied to the global Q-function to mitigate the impact of imperfect information sharing. We establish non-asymptotic global convergence guarantees under exact policy evaluation, which are nearly independent of the size of the state-action space and illuminate the impacts of network size and connectivity. To the best of our knowledge, this is the first time that global convergence is established for federated multi-task RL using policy optimization. Moreover, the convergence behavior of the proposed algorithms is robust against inexactness of policy evaluation. | Source: | arXiv, 2311.00201 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|