Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

18 March 2025
 
  » arxiv » 2311.00312

 Article overview



Variational non-Bayesian inference of the Probability Density Function in the Wiener Algebra
U Jin Choi ; Kyung Soo Rim ;
Date 1 Nov 2023
AbstractThis paper presents a research study focused on uncovering the hidden population distribution from the viewpoint of a variational non-Bayesian approach. It asserts that if the hidden probability density function (PDF) has continuous partial derivatives of at least half the dimension's order, it can be perfectly reconstructed from a stationary ergodic process: First, we establish that if the PDF belongs to the Wiener algebra, its canonical ensemble form is uniquely determined through the Fréchet differentiation of the Kullback-Leibler divergence, aiming to minimize their cross-entropy. Second, we utilize the result that the differentiability of the PDF implies its membership in the Wiener algebra. Third, as the energy function of the canonical ensemble is defined as a series, the problem transforms into finding solutions to the equations of analytic series for the coefficients in the energy function. Naturally, through the use of truncated polynomial series and by demonstrating the convergence of partial sums of the energy function, we ensure the efficiency of approximation with a finite number of data points. Finally, through numerical experiments, we approximate the PDF from a random sample obtained from a bivariate normal distribution and also provide approximations for the mean and covariance from the PDF. This study substantiates the excellence of its results and their practical applicability.
Source arXiv, 2311.00312
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica