Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 2311.00330

 Article overview



Latent Space Inference For Spatial Transcriptomics
J. Ding ; S.N. Zaman ; P.Y. Chen ; D. Wang ;
Date 1 Nov 2023
AbstractIn order to understand the complexities of cellular biology, researchers are interested in two important metrics: the genetic expression information of cells and their spatial coordinates within a tissue sample. However, state-of-the art methods, namely single-cell RNA sequencing and image based spatial transcriptomics can only recover a subset of this information, either full genetic expression with loss of spatial information, or spatial information with loss of resolution in sequencing data. In this project, we investigate a probabilistic machine learning method to obtain the full genetic expression information for tissues samples while also preserving their spatial coordinates. This is done through mapping both datasets to a joint latent space representation with the use of variational machine learning methods. From here, the full genetic and spatial information can be decoded and to give us greater insights on the understanding of cellular processes and pathways.
Source arXiv, 2311.00330
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica