Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » astro-ph/0107061

 Article overview



Angular Momentum Evolution of Stars in the Orion Nebula Cluster
Jeremy Tinker ; Marc Pinsonneault ; Donald Terndrup ;
Date 3 Jul 2001
Subject astro-ph
AffiliationOhio State University
Abstract(Abridged) We present theoretical models of stellar angular momentum evolution from the Orion Nebula Cluster (ONC) to the Pleiades and the Hyades. We demonstrate that observations of the Pleiades and Hyades place tight constraints on the angular momentum loss rate from stellar winds. The observed periods, masses and ages of ONC stars in the range 0.2--0.5 M$_odot$, and the loss properties inferred from the Pleiades and Hyades stars, are then used to test the initial conditions for stellar evolution models. We use these models to estimate the distribution of rotational velocities for the ONC stars at the age of the Pleiades (120 Myr). The modeled ONC and observed Pleiades distributions of rotation rates are not consistent if only stellar winds are included. In order to reconcile the observed loss of angu lar momentum between these two clusters, an extrinsic loss mechanism such as protostar-accretion disk interaction is required. Our model, which evolves the ONC stars with a mass dependent saturation threshold normalized such that $omega_{crit} = 5.4 omega_odot$ at 0.5 m, and which includes a distribution of disk lifetimes that is uniform over the range 0--6 Myr, is consistent with the Pleiades. This model for disk-locking lifetimes is also consistent with inferred disk lifetimes from the percentage of stars with infrared excesses observed in young clusters. Different models, using a variety of initial period distributions and different maximum disk lifetimes, are also compared to the Pleiades. For disk-locking models that use a uniform distribution of disk lifetimes over the range 0 to $ au_{max}$, the acceptable range of the maximum lifetime is $3.5 < au_{max} < 8.5$ Myr.
Source arXiv, astro-ph/0107061
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica