Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » astro-ph/0112542

 Article overview



Detection of negative superhumps in a LMXRB -- an end to the long debate on the nature of V1405 Aql (X1916-053)
A. Retter ; Y. Chou ; T. Bedding ;
Date 26 Dec 2001
Subject astro-ph
AffiliationUniversity of Sydney and Keele University), Y. Chou (National Tsing Hua University), T. Bedding (University of Sydney
AbstractThe detection of two similar periodicities (3001 and 3028 s) in the light curve of V1405 Aql, a low mass X-ray Binary (LMXRB), has attracted the attention of many observers. Two basic competing models have been offered for this system. According to the first, V1405 Aql is a triple system. The second model invokes the presence of an accretion disc that precesses in the apsidal plane, suggesting that the shorter period is the orbital period while the longer is a positive superhump. The debate on the nature of V1405 Aql has been continued until very recently. Re-examination of previously published X-ray data reveals an additional periodicity of 2979 s, which is naturally interpreted as a negative superhump. The recently found 4.8-d period is consequently understood as the nodal precession of the disc. This is the first firm detection of negative superhumps and nodal precession in a LMXRB. Our results thus confirm the classification of V1405 Aql as a permanent superhump system. The 14-year argument on the nature of this intriguing object has thus finally come to an end. We find that the ratio between the negative superhump deficit (over the orbital period) and the positive superhump excess is a function of orbital period in systems that show both types of superhumps. This relation presents some challenge to theory as it fits binaries with different components. We propose that a thickening in the disc rim, which causes increased occultation of the X-ray source, is the mechanism responsible for both types of superhumps in LMXRBs. According to our model superhumps (both in the X-ray and optical regimes) are permitted in high inclination LMXRBs contrary to Haswell et al. (2001) prediction.
Source arXiv, astro-ph/0112542
Other source [GID 1094972] astro-ph/0110103
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica