Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » astro-ph/0201001

 Article overview



Selfgravity and QSO disks
Jeremy Goodman ;
Date 1 Dec 2001
Journal Mon.Not.Roy.Astron.Soc. 339 (2003) 937
Subject astro-ph
AffiliationPrinceton University Observatory
AbstractIt is well known that the outer parts of QSO accretion disks are prone to selfgravity if heated solely by orbital dissipation. Such disks might be expected to form stars rather than accrete onto the black hole. The arguments leading to this conclusion are reviewed. Conversion of a part of the gas into high-mass stars or stellar-mass black holes, and the release of energy in these objects by fusion or accretion, may help to stabilize the remaining gas. If the disk extends beyond a parsec, however, more energy is probably required for stability than is available by turning half the gas into high-mass stars. Small black holes are perhaps marginally viable energy sources, with important implications (not pursued here) for the QSO spectral energy distribution, the metallicity of the gas, microlensing of QSO disks, and perhaps gravitational-wave searches. Other possible palliatives for selfgravity include accretion driven by nonviscous torques that allow near-sonic accretion speeds and hence lower surface densities for a given mass accretion rate. All such modes of accretion face major theoretical difficulties, and in any case merely postpone selfgravity. Alternatively, thin disks may not exist beyond a thousand Schwarzshild radii or so (0.01 parsec), in which case QSOs must be fueled by gas with small specific angular momentum.
Source arXiv, astro-ph/0201001
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica