Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » astro-ph/0412005

 Article overview



Estimating Photometric Redshifts Using Support Vector Machines
Yogesh Wadadekar ;
Date 1 Dec 2004
Journal Publ.Astron.Soc.Pac. 117 (2005) 79
Subject astro-ph
AbstractWe present a new approach to obtaining photometric redshifts using a kernel learning technique called Support Vector Machines (SVMs). Unlike traditional spectral energy distribution fitting, this technique requires a large and representative training set. When one is available, however, it is likely to produce results that are comparable to the best obtained using template fitting and artificial neural networks. Additional photometric parameters such as morphology, size and surface brightness can be easily incorporated. The technique is demonstrated using samples of galaxies from the Sloan Digital Sky Survey Data Release 2 and the hybrid galaxy formation code GalICS. The RMS error in redshift estimation is $<0.03$ for both samples. The strengths and limitations of the technique are assessed.
Source arXiv, astro-ph/0412005
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica