| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
15 February 2025 |
|
| | | |
|
Article overview
| |
|
8--13 um spectroscopy of YSOs: Evolution of the silicate feature | J. E. Kessler-Silacci
; L. A. Hillenbrand
; G. A. Blake
; M. R. Meyer
; | Date: |
1 Dec 2004 | Journal: | Astrophys.J. 622 (2005) 404-429 | Subject: | astro-ph | Affiliation: | The University of Texas at Austin), L. A. Hillenbrand (Caltech), G. A. Blake (Caltech) and M. R. Meyer (Steward Observatory, The University of Arizona | Abstract: | In order to investigate possible connections between dust processing and disk properties, 8--13 um spectra of 34 young stars, with a range of circumstellar environments and spectral types A to M, were obtained using the Long Wavelength Spectrometer at the W. M. Keck Observatory. The broad 9.7 um amorphous silicate feature which dominates this wavelength regime evolves from absorption in young, embedded sources, to emission in optically revealed stars, and to complete absence in older debris disk systems for both low- and intermediate-mass stars. The peak wavelength and FWHM are centered about 9.7 and ~2.3 um, corresponding to amorphous olivine, with a larger spread in FWHM for embedded sources and in peak wavelength for disks. In a few of our objects that have been previously identified as class I low-mass YSOs, the observed silicate feature is complex, with absorption near 9.5 um and emission peaking around 10 um. Although most of the emission spectra show broad classical features attributed to amorphous silicates, variations in the shape/strength may be linked to dust processing, including grain growth and/or silicate crystallization. We study quantitatively the evidence for evolutionary trends in the 8--13 um spectra through a variety of spectral shape diagnostics. Based on the lack of correlation between these diagnostics and broad-band infrared luminosity characteristics for silicate emission sources, we conclude that although spectral signatures of dust processing are present, they can not be connected clearly to disk evolutionary stage (for optically thick disks) or optical depth (for optically thin disks). The diagnostics of silicate absorption features (other than the central wavelength of the feature), however, are tightly correlated with optical depth. | Source: | arXiv, astro-ph/0412033 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|