| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
17 February 2025 |
|
| | | |
|
Article overview
| |
|
Particle-In-Cell simulations of circularly polarised Alfvén wave phase mixing: a new mechanism for electron acceleration in collisionless plasmas | David Tsiklauri
; Jun-Ichi Sakai
; Shinji Saito
; | Date: |
2 Dec 2004 | Subject: | astro-ph | Abstract: | In this work we used Particle-In-Cell simulations to study the interaction of circularly polarised Alfvén waves with one dimensional plasma density inhomogeneities transverse to the uniform magnetic field (phase mixing) in collisionless plasmas. In our preliminary work we reported discovery of a new electron acceleration mechanism, in which progressive distortion of the Alfvén wave front, due to the differences in local Alfvén speed, generates an oblique (nearly parallel to the magnetic field) electrostatic field. The latter accelerates electrons through the Landau resonance. Here we report a detailed study of this novel mechanism, including: (i) analysis of broadening of the ion distribution function due to the presence of Alfvén waves and (ii) the generation of compressive perturbations due to both weak non-linearity and plasma density inhomogeneity. The amplitude decay law in the inhomogeneous regions, in the kinetic regime, is demonstrated to be the same as in the MHD approximation described by Heyvaerts and Priest (1983). | Source: | arXiv, astro-ph/0412062 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|