| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
07 February 2025 |
|
| | | |
|
Article overview
| |
|
'Sculptor'-ing the Galaxy? The Chemical Compositions of Red Giants in the Sculptor Dwarf Spheroidal Galaxy | Doug Geisler
; Verne V. Smith
; George Wallerstein
; Guillermo Gonzalez
; Corinne Charbonnel
; | Date: |
2 Dec 2004 | Subject: | astro-ph | Affiliation: | Universidad de Concepcion, Concepcion, Chile), Verne V. Smith (University of Texas El Paso, El Paso, Texas, USA), George Wallerstein (University of Washington, Seattle, Washington, USA), Guillermo Gonzalez (Iowa State University, Ames, Iowa, USA), Cori | Abstract: | We have used high-resolution, high signal-to-noise spectra obtained with the VLT and UVES to determine abundances of 17 elements in 4 red giants in the Sculptor dwarf spheroidal galaxy. Our [Fe/H] values range from --2.10 to --0.97, confirming previous findings of a large metallicity spread. We have combined our data with similar data for five Sculptor giants studied recently to form one of the largest samples of high resolution abundances yet obtained for a dwarf spheroidal galaxy, covering essentially the full known metallicity range. These properties allow us to establish trends of [X/Fe] with [Fe/H] for many elements, X. The trends are significantly different from the trends seen in galactic halo and globular cluster stars. We compare our Sculptor sample to their most similar Galactic counterparts and find substantial differences remain even with these stars. The many discrepancies in the relationships between [X/Fe] as seen in Sculptor compared with Galactic field stars indicates that our halo cannot be made up in bulk of stars similar to those presently seen in dwarf spheroidal galaxies like Sculptor. These results have serious implications for the Searle-Zinn and hierarchical galaxy formation scenarios. We also find that the most metal-rich star in our sample is a heavy element-rich star. A very high percentage of such heavy element stars are now known in dwarf spheroidals compared to the halo, further mitigating against the formation of the halo from such objects. | Source: | arXiv, astro-ph/0412065 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|