Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

08 February 2025
 
  » arxiv » astro-ph/0412085

 Article overview



Coronal Seismology and the Propagation of Acoustic Waves Along Coronal Loops
J. A. Klimchuk ; S. E. M. Tanner ; I. De Moortel ;
Date 3 Dec 2004
Journal Astrophys.J. 616 (2004) 1232-1241
Subject astro-ph
AbstractWe use a combination of analytical theory, numerical simulation, and data analysis to study the propagation of acoustic waves along coronal loops. We show that the intensity perturbation of a wave depends on a number of factors, including dissipation of the wave energy, pressure and temperature gradients in the loop atmosphere, work action between the wave and a flow, and the sensitivity properties of the observing instrument. In particular, the scale length of the intensity perturbation varies directly with the dissipation scale length (i.e., damping length) and the scale lengths of pressure, temperature, and velocity. We simulate wave propagation in three different equilibrium loop models and find that dissipation and pressure and temperature stratification are the most important effects in the low corona where the waves are most easily detected. Velocity effects are small, and cross-sectional area variations play no direct role for lines-of-sight that are normal to the loop axis. The intensity perturbation scale lengths in our simulations agree very well with the scale lengths we measure in a sample of loops observed by TRACE. The median observed value is 4.35x10^9 cm. In some cases the intensity perturbation increases with height, which is likely an indication of a temperature inversion in the loop (i.e., temperature that decreases with height). Our most important conclusion is that thermal conduction, the primary damping mechanism, is accurately described by classical transport theory. There is no need to invoke anomalous processes to explain the observations.
Source arXiv, astro-ph/0412085
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica