Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » astro-ph/0412096

 Article overview



How do Uncertainties in the Surface Chemical Abundances of the Sun Affect the Predicted Solar Neutrino Fluxes?
John N. Bahcall ; Aldo M. Serenelli ;
Date 4 Dec 2004
Journal Astrophys.J. 626 (2005) 530
Subject astro-ph hep-ph nucl-ex nucl-th
AbstractWe show that uncertainties in the values of the surface heavy element abundances of the Sun are the largest source of the theoretical uncertainty in calculating the p-p, pep, 8B, 13N, 15O, and 17F solar neutrino fluxes. We evaluate for the first time the sensitivity (partial derivative) of each solar neutrino flux with respect to the surface abundance of each element. We then calculate the uncertainties in each neutrino flux using `conservative (preferred)’ and `optimistic’ estimates for the uncertainties in the element abundances. The total conservative (optimistic) composition uncertainty in the predicted 8B neutrino flux is 11.6% (5.0%) when sensitivities to individual element abundances are used. The traditional method that lumps all abundances into a single quantity (total heavy element to hydrogen ratio, Z/X) yields a larger uncertainty, 20%. The uncertainties in the carbon, oxygen, neon, silicon, sulphur, and iron abundances all make significant contributions to the uncertainties in calculating solar neutrino fluxes; the uncertainties of different elements are most important for different neutrino fluxes. The uncertainty in the iron abundance is the largest source of the estimated composition uncertainties of the important 7Be and 8B solar neutrinos. Carbon is the largest contributor to the uncertainty in the calculation of the p-p, 13N, and 15O neutrino fluxes. However, for all neutrino fluxes, several elements contribute comparable amounts to the total composition uncertainty.
Source arXiv, astro-ph/0412096
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica