| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
07 February 2025 |
|
| | | |
|
Article overview
| |
|
STIS ultraviolet/optical spectroscopy of `warm' ultraluminous infrared galaxies | D. Farrah
; J. A. Surace
; S. Veilleux
; D. B. Sanders
; W. D. Vacca
; | Date: |
7 Dec 2004 | Subject: | astro-ph | Affiliation: | Caltech), J. A. Surace (Caltech), S. Veilleux (Maryland), D. B. Sanders (Hawaii), W. D. Vacca (NASA-AMES | Abstract: | (Abridged) We present high spatial resolution ultraviolet and optical spectroscopy, obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of nuclear structures within four `warm’ Ultraluminous Infrared Galaxies (ULIRGs). We find an AGN in at least three, and probably all four of our sample, hosted in a compact, optically luminous `knot’. In three cases these knots were previously identified as a putative AGN nucleus from multiband optical imaging. Three of the sample also harbor a starburst in one or more knots, suggesting that the optically luminous knots seen in local ULIRGs are the most likely sites of the dust-shrouded starburst and AGN activity that power the infrared emission. The four AGN have a diverse range of properties; two are classical narrow line AGN, one shows both broad and narrow lines and evidence for lines of sight from the narrow through to the broad line regions, and one is plausibly a FeLoBAL AGN. The probable presence in one object of an FeLoBAL AGN, which are extremely rare in the QSO population, supports the idea that LoBAL AGN may be youthful systems shrouded in gas and dust rather than AGN viewed along a certain line of sight. The three starbursts for which detailed constraints are possible show a smaller range in properties; all three bursts are young with two having ages of ~4Myr and the third having an age of 20Myr, suggesting that ULIRGs undergo several bursts of star formation during their lifetimes. None of the starbursts show evidence for Initial Mass Function slopes steeper than about 3.3. The metallicities of the knots for which metallicities can be derived are all at least 1.5 times the Solar value. The properties of one further starburst knot are consistent with it being the forming core of an elliptical galaxy. | Source: | arXiv, astro-ph/0412168 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|