Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

08 October 2024
 
  » arxiv » astro-ph/0510203

 Article overview



The gravitational wave "probability event horizon" for double neutron star mergers
D. M. Coward ; M. Lilley ; E. J. Howell ; R. R. Burman ; D. G. Blair ;
Date 7 Oct 2005
AbstractGravitational waves generated by the final merger of double neutron star (DNS) binary systems are a key target for the gravitational wave (GW) interferometric detectors, such as LIGO, and the next generation detectors, Advanced LIGO. The cumulative GW signal from DNS mergers in interferometric data will manifest as "geometrical noise": a non-continuous stochastic background with a unique statistical signature dominated by the spatial and temporal distribution of the sources. Because geometrical noise is highly non-Gaussian, it could potentially be used to identify the presence of a stochastic GW background from DNS mergers. We demonstrate this by fitting to a simulated distribution of transients using a model for the DNS merger rate and idealized Gaussian detector noise. Using the cosmological "probability event horizon" concept and recent bounds for the Galactic DNS merger rate, we calculate the evolution of the detectability of DNS mergers with observation time. For Advanced LIGO sensitivities and a detection threshold assuming optimal filtering, there is a 95% probability that a minimum of one DNS merger signal will be detectable from the ensemble of events comprising the stochastic background during 12-211 days of observation. For initial LIGO sensitivities, we identify an interesting regime where there is a 95% probability that at least one DNS merger with signal-to-noise ratio > unity will occur during 4-68 days of observation. We propose that there exists an intermediate detection regime with pre-filtered signal-noise-ratio less than unity, where the DNS merger rate is high enough that the geometrical signature could be identified in interferometer data.
Source arXiv, astro-ph/0510203
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica