Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3658
Articles: 2'599'751
Articles rated: 2609

03 November 2024
 
  » arxiv » astro-ph/0510587

 Article overview



The Cosmic Infrared Background Experiment
James Bock ; John Battle ; Asantha Cooray ; Mitsunobu Kawada ; Brian Keating ; Andrew Lange ; Dae-Hea Lee ; Toshio Matsumoto ; Shuji Matsuura ; Soojong Pak ; Tom Renbarger ; Ian Sullivan ; Kohji Tsumura ; Takehiko Wada ; Toyoki Watabe ;
Date 19 Oct 2005
AffiliationJPL/Caltech), John Battle (JPL), Asantha Cooray (UC Irvine), Mitsunobu Kawada (Nagoya), Brian Keating (UC San Diego), Andrew Lange (Caltech), Dae-Hea Lee (KASI), Toshio Matsumoto (ISAS/JAXA), Shuji Matsuura (ISAS/JAXA), Soojong Pak (KASI), Tom Renbarge
AbstractWe are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7 arcseconds to 2 degrees over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100 times fainter than IRTS/DIRBE. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near-infrared background, accurately assessing the contribution of local (z = 1-3) galaxies to the observed background fluctuations, allowing a deep and comprehensive survey for first-light galaxy background fluctuations. The low-resolution spectrometer will search for a redshifted Lyman cutoff feature between 0.8 - 2.0 microns. The high-resolution spectrometer will trace zodiacal light using the intensity of scattered Fraunhofer lines, providing an independent measurement of the zodiacal emission and a new check of DIRBE zodiacal dust models. The combination will systematically search for the infrared excess background light reported in near-infrared DIRBE/IRTS data, compared with the small excess reported at optical wavelengths.
Source arXiv, astro-ph/0510587
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica