| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
18 January 2025 |
|
| | | |
|
Article overview
| |
|
3D Relativistic MHD Simulation of a Tilted Accretion Disk Around a Rapidly Rotating Black Hole | P. Chris Fragile
; Peter Anninos
; Omer M. Blaes
; Jay D. Salmonson
; | Date: |
9 Jan 2007 | Abstract: | We posit that accreting compact objects, including stellar mass black holes and neutron stars as well as supermassive black holes, may undergo extended periods of accretion during which the angular momentum of the disk at large scales is misaligned with that of the compact object. In such a scenario, Lense-Thirring precession caused by the rotating compact object can dramatically affect the disk. In this presentation we describe results from a three-dimensional relativistic magnetohydrodynamic simulation of an MRI turbulent disk accreting onto a tilted rapidly rotating black hole. For this case, the disk does not achieve the commonly described Bardeen-Petterson configuration; rather, it remains nearly planar, undergoing a slow global precession. Accretion from the disk onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is a consequence of the non-sphericity of the gravitational spacetime of the black hole. | Source: | arXiv, astro-ph/0701272 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|