Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

21 January 2025
 
  » arxiv » astro-ph/0701304

 Article overview



Diffusive low optical depth particle disks truncated by planets
Alice C. Quillen ;
Date 10 Jan 2007
AbstractTwo dimensional particle disks in proximity to a planet are numerically integrated to determine when a planet in a circular orbit can truncate a particle disk. Collisions are treated by giving each particle a series of velocity perturbations during the integration. We estimate the mass of a planet required to truncate a particle disk as a function of collision rate, related to the disk optical depth, and velocity perturbation size, related to the disk velocity dispersion. We find that for particle disks in the regime estimated for debris disks, a Neptune mass planet is sufficiently massive to truncate the disk. If both the velocity dispersion and the disk optical depth are low (dispersion less than approximately 0.02 in units of circular motion, and optical depth less than 10^-4) then an Earth mass planet suffices. We find that the disk is smooth and axisymmetric unless the velocity perturbation is small and the planet mass is of order or greater than a Neptune mass in which case azimuthal structure is seen near prominent mean motion resonances.
Source arXiv, astro-ph/0701304
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica