Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

11 December 2024
 
  » arxiv » astro-ph/0701439

 Article overview



Molecular and Atomic Excitation Stratification in the Outflow of the Planetary Nebula M27
Stephan R. McCandliss ; Kevin France ; Roxana E. Lupu ; Eric B. Burgh ; Kenneth Sembach ; Jeffrey Kruk ; B.-G. Andersson ; Paul D. Feldman ;
Date 16 Jan 2007
AbstractHigh resolution spectroscopy with FUSE and STIS of atomic and molecular velocity stratification in the nebular outflow of M27 challenge models for the abundance kinematics in planetary nebulae. The simple picture of a very high speed (~ 1000 km/s), high ionization, radiation driven stellar wind surrounded by a slower (~ 10 km/s) mostly molecular outflow, with low ionization and neutral atomic species residing at the wind interaction interface, is not supported... We find ...there is a fast (33 -- 65 km/s) low ionization zone, surrounding a slower (<~ 33 km/s) high ionization zone and, at the transition velocity (33 km/s), vibrationally excited H_2 is intermixed with a predominately neutral atomic medium... Far-UV continuum fluorescence of H_2 is not detected, but Lyman alpha (Lya) fluorescence is present. The diffuse nebular medium is inhospitable to molecules and dust. Maintaining the modest equilibrium abundance of H_2 (N(H_2)/N(HI) << 1) in the diffuse nebular medium requires a source of H_2, mostly likely the clumpy nebular medium. The stellar SED shows no signs of reddening (E(B-V) < 0.01), but paradoxically measurements of Ha/Hb ... indicate E(B-V) ~ 0.1. ...the apparent enhancement of Ha/Hb in the absence of dust may result from a two step process of H_2 ionization by Lyman continuum (Lyc) photons followed by dissociative recombination (H_2 + gamma -> H_2^+ + e -> H(1s) + H (nl)), which ultimately produces fluorescence of Ha and Lya. In the optically thin limit at the inferred radius of the velocity transition we find dissociation of H_2 by stellar Lyc photons is an order of magnitude more efficient than spontaneous dissociation by far-UV photons. We suggest that the importance of this H_2 destruction process in HII regions has been overlooked.
Source arXiv, astro-ph/0701439
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica