Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

11 December 2024
 
  » arxiv » astro-ph/0701476

 Article overview



Spitzer Space Telescope study of disks in the young $sigma$ Orionis cluster
Jesus Hernandez ; L. Hartmann ; T. Megeath ; R. Gutermuth ; J. Muzerolle ; N. Calvet ; A. K. Vivas ; C. Briceno ; L. Allen ; J. Stauffer ; E. Young ; G. Fazio ;
Date 16 Jan 2007
AbstractWe report new Spitzer Space Telescope observations from the IRAC and MIPS instruments of the young (~ 3 Myr) sigma Orionis cluster. We identify 336 stars as members of the cluster using optical and near-infrared color magnitude diagrams. Using the spectral energy distribution (SED) slopes in the IRAC spectral range, we place objects in several classes: non-excess stars, stars with optically thick disks(like classical T Tauri stars), class I (protostellar) candidates, and stars with ``evolved disks’’; the last exhibit smaller IRAC excesses than optically thick disk systems. In general, this classification agrees with the location expected in IRAC-MIPS color-color diagrams for these objects. We find that the evolved disk systems are mostly a combination of objects with optically thick but non-flared disks, suggesting grain growth and/or settling, and transition disks, systems in which the inner disk is partially or fully cleared of small dust. In all, we identify 7 transition disk candidates and 3 possible debris disk systems. As in other young stellar populations, the fraction of disks depends on the stellar mass, ranging from ~10% for stars in the Herbig Ae/Be mass range (>2 msun) to ~35% in the T Tauri mass range (1-0.1 msun). We find that the disk fraction does not decrease significantly toward the brown dwarf candidates (<0.1 msun). The IRAC infrared excesses found in stellar clusters and associations with and without central high mass stars are similar, suggesting that external photoevaporation is not very important in many clusters. Finally, we find no correlation between the X-ray luminosity and the disk infrared excess, suggesting that the X-rays are not strongly affected by disk accretion.
Source arXiv, astro-ph/0701476
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica