Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

11 December 2024
 
  » arxiv » astro-ph/0701484

 Article overview



The chemistry of multiply deuterated molecules in protoplanetary disks. I. The outer disk
K. Willacy ;
Date 16 Jan 2007
AbstractWe present new models of the deuterium chemistry in protoplanetary disks, including, for the first time, multiply deuterated species. We use these models to explore whether observations in combination with models can give us clues as to which desorption processes occur in disks. We find, in common with other authors, that photodesorption can allow strongly bound molecules such as HDO to exist in the gas phase in a layer above the midplane. Models including this process give the best agreement with the observations. In the midplane, cosmic ray heating can desorb weakly bound molecules such as CO and N$_2$. We find the observations suggest that N$_2$ is gaseous in this region, but that CO must be retained on the grains to account for the observed DCO$^+$/HCO$^+$. This could be achieved by CO having a higher binding energy than N$_2$ (as may be the case when these molecules are accreted onto water ice) or by a smaller cosmic ray desorption rate for CO than assumed here, as suggested by recent theoretical work.
For gaseous molecules the calculated deuteration can be greatly changed by chemical processing in the disk from the input molecular cloud values. On the grains singly deuterated species tend to retain the D/H ratio set in the molecular cloud, whereas multiply deuterated species are more affected by the disk chemistry. Consequently the D/H ratios observed in comets may be partly set in the parent cloud and partly in the disk, depending on the molecule.
Source arXiv, astro-ph/0701484
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica