Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

14 December 2024
 
  » arxiv » astro-ph/0701506

 Article overview



LSST: Comprehensive NEO Detection, Characterization, and Orbits
Z. Ivezic ; J.A. Tyson ; M. Juric ; J. Kubica ; A. Connolly ; F. Pierfederici ; A.W. Harris ; E. Bowell ; LSST Collaboration ;
Date 17 Jan 2007
Abstract(Abridged) The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. Solar System mapping is one of the four key scientific design drivers, with emphasis on efficient Near-Earth Object (NEO) and Potentially Hazardous Asteroid (PHA) detection, orbit determination, and characterization. In a continuous observing campaign of pairs of 15 second exposures of its 3,200 megapixel camera, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be visited about 1000 times. The baseline design satisfies strong constraints on the cadence of observations mandated by PHAs such as closely spaced pairs of observations to link different detections and short exposures to avoid trailing losses. Equally important, due to frequent repeat visits LSST will effectively provide its own follow-up to derive orbits for detected moving objects. Detailed modeling of LSST operations, incorporating real historical weather and seeing data from LSST site at Cerro Pachon, shows that LSST using its baseline design cadence could find 90% of the PHAs with diameters larger than 250 m, and 75% of those greater than 140 m within ten years. However, by optimizing sky coverage, the ongoing simulations suggest that the LSST system, with its first light in 2013, can reach the Congressional mandate of cataloging 90% of PHAs larger than 140m by 2020.
Source arXiv, astro-ph/0701506
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica