Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » astro-ph/0701682

 Article overview



Modelling and interpreting the dependence of clustering on the spectral energy distributions of galaxies
Lan Wang ; Cheng Li ; Guinevere Kauffmann ; Gabriella De Lucia ;
Date 24 Jan 2007
AbstractWe extend our previous physically-based halo occupation distribution models to include the dependence of clustering on the spectral energy distributions of galaxies. The high resolution Millennium Simulation is used to specify the positions and the velocities of the model galaxies. The stellar mass of a galaxy is assumed to depend only on M_{infall}, the halo mass when the galaxy was last the central dominant object of its halo. Star formation histories are parametrized using two additional quantities that are measured from the simulation for each galaxy: its formation time (t_{form}), and the time when it first becomes a satellite (t_{infall}). Central galaxies begin forming stars at time t_{form} with an exponential time scale tau_c. If the galaxy becomes a satellite, its star formation declines thereafter with a new time scale tau_s. We compute 4000 AA break strengths for our model galaxies using stellar population synthesis models. By fitting these models to the observed abundances and projected correlations of galaxies as a function of break strength in the Sloan Digital Sky Survey, we constrain tau_c and tau_s as functions of galaxy stellar mass. We find that central galaxies with large stellar masses have ceased forming stars. At low stellar masses, central galaxies display a wide range of different star formation histories, with a significant fraction experiencing recent starbursts. Satellite galaxies of all masses have declining star formation rates, with similar e-folding times, tau_s ~ 2.5Gyr. One consequence of this long e-folding time is that the colour-density relation is predicted to flatten at redshifts > 1.5, because star formation in the majority of satellites has not yet declined by a significant factor. This is consistent with recent observational results from the DEEP and VVDS surveys.
Source arXiv, astro-ph/0701682
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica