Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » astro-ph/9605076

 Article overview



Two-Stream Instability of Counter-Rotating Galaxies
R.V.E. Lovelace ; K.P. Jore ; M.P. Haynes ;
Date 14 May 1996
AbstractThe present study of the two-stream instability in stellar disks with counter-rotating components of stars and/or gas is stimulated by recently discovered counter-rotating spiral and S0 galaxies. Strong linear two-stream instability of tightly-wrapped spiral waves is found for one and two-armed waves with the pattern angular speed of the unstable waves always intermediate between the angular speed of the co-rotating matter ($+Omega$) and that of the counter-rotating matter ($-Omega$). The instability arises from the interaction of positive and negative energy modes in the co- and counter-rotating components. The unstable waves are in general convective - they move in radius and radial wavenumber space - with the result that amplification of the advected wave is more important than the local growth rate. For a galaxy of co-rotating stars and counter-rotating stars of mass-fraction $xi_* < {1over 2}$, or of counter-rotating gas of mass-fraction $xi_g < {1over 2}$, the largest amplification is usually for the one-armed leading waves (with respect to the co-rotating stars). For the case of both counter-rotating stars and gas, the largest amplifications are for $xi_*+xi_g approx {1over 2}$, also for one-armed leading waves. The two-armed trailing waves usually have smaller amplifications. The growth rates and amplifications all decrease as the velocity spreads of the stars and/or gas increase. It is suggested that the spiral waves can provide an effective viscosity for the gas causing its accretion.
Source arXiv, astro-ph/9605076
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica