Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3658
Articles: 2'599'751
Articles rated: 2609

03 November 2024
 
  » arxiv » astro-ph/9708066

 Article overview



A Parallel P^3M Code for Very Large Scale Cosmological Simulations
Tom MacFarland ; Jakob Pichlmeier ; Frazer Pearce ; Hugh Couchman ;
Date 7 Aug 1997
Subject astro-ph
AbstractWe have developed a parallel Particle-Particle, Particle-Mesh (P^3M) simulation code for the T3E well suited to studying the time evolution of systems of particles interacting via gravity and gas forces in cosmological contexts. The parallel code is based upon the public-domain serial Adaptive P^3M code of Couchman et al(1). The algorithm resolves gravitational forces into a long range component computed by discretizing the mass distribution and solving Poisson’s equation on a grid using an FFT convolution method, and a short range component computed by direct force summation for sufficiently close particle pairs. The code consists primarily of a particle-particle computation parallelized by domain decomposition over blocks of neighbor-cells, a more regular mesh calculation distributed in planes along one dimension, and several transformations between the two distributions. Great care was taken throughout to make optimal use of the available memory, so that the current implementation is capable of simulating systems approaching 10^9 particles using a 1024^3 mesh for the long range force computation. These are thus among the largest N-body simulations ever carried out. We discuss these memory optimizations as well as those motivated by computational performance. Results from production runs have been very encouraging, and even prior to the implimentation of the full adaptive scheme the code has been used effectively for simulations in which the particle distribution becomes highly clustered as well as for other non-uniform systems of astrophysical interest.
Source arXiv, astro-ph/9708066
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica