| | |
| | |
Stat |
Members: 3660 Articles: 2'599'751 Articles rated: 2609
10 November 2024 |
|
| | | |
|
Article overview
| |
|
Are Seyfert Narrow Line Regions Powered by Radio Jets? | G.V. Bicknell
; M.A. Dopita
; Z. Tsvetanov
; R.S. Sutherland
; | Date: |
4 Sep 1997 | Subject: | astro-ph | Abstract: | We argue that the narrow line regions of Seyfert galaxies are powered by the transport of energy and momentum by the radio-emitting jets and consequently that the ratio of the radio power to jet energy flux is much smaller than is usually assumed for radio galaxies. This can be partially attributed to the smaller ages ($sim 10^6 yrs$) of Seyferts compared to radio galaxies but one also requires that either the magnetic energy density is more than an order of magnitude below the equipartition value, or more likely, that the internal energy densities of Seyfert jets are dominated by thermal plasma. If Seyfert jets are initially dominated by relativistic plasma, then an analysis of the data on jets in five Seyfert galaxies shows that all but one of these would have mildly relativistic jet velocities near 100 pc in order to power the respective narrow-line regions. However, observations of jet-cloud interactions in the NLR provide additional information on jet velocities and composition via the momentum budget. Our analysis of a jet-cloud interaction in NGC 1068, implies a shocked jet pressure much larger than the minimum pressure of the radio knot, a velocity $sim 0.06 c$ and a jet temperature $sim 10^9 K$ implying mildly relativistic electrons but thermal protons. The jet mass flux at this point $sim 0.5 M_odot yr^{-1}$, is an order of magnitude higher than the mass accretion rate into the black hole, strongly indicating entrainment. The initial jet mass flux $sim 0.02 M_odot yr^{-1}$, comparable to the mass accretion rate and is consistent with the densities inferred for accretion disc coronae from high energy observations, together with an initially mildly relativistic velocity and an initial jet radius of order 10 gravitational radii. | Source: | arXiv, astro-ph/9709037 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|