Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » cond-mat/0606011

 Article overview


Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids
K.Furtado ; J.M.Yeomans ;
Date 31 May 2006
Subject Soft Condensed Matter
AbstractWe use a lattice Boltzmann method to study pattern formation in chemically reactive binary fluids in the regime where hydrodynamic effects are important. The coupled equations solved by the method are a Cahn-Hilliard equation, modified by the inclusion of a reactive source term, and the Navier-Stokes equations for conservation of mass and momentum. The coupling is two-fold, resulting from the advection of the order-parameter by the velocity field and the effect of fluid composition on pressure. We study the the evolution of the system following a critical quench for a linear and for a quadratic reaction source term. Comparison is made between the high and low viscosity regimes to identify the influence of hydrodynamic flows. In both cases hydrodynamics is found to influence the pathways available for domain growth and the eventual steady-states.
Source arXiv, cond-mat/0606011
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica