Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » cond-mat/0606052

 Article overview


Molecular Dynamics Study of Polarizable Ion Models for Molten AgBr
J. Trullas ; V. Bitrian ;
Date 2 Jun 2006
Subject Soft Condensed Matter
AbstractThree different polarizable ion models for molten AgBr have been studied by molecular dynamics simulations. The three models are based on a rigid ion model (RIM) with a pair potential of the type proposed by Vashishta and Rahman for alpha-AgI, to which the induced dipole polarization of the ions is added. In the first (PIM1), the dipole moments are only induced by the local electric field; while in the other two (PIM1s and PIM2s), a short-range overlap induced polarization opposes the electrically induced dipole moments. In the PIM1 and the PIM1s only the anions are assumed polarizable, while in the PIM2s both species are polarizable. Long molecular dynamics simulations show that the PIM2s is an unphysical model since, for some improbable but possible critical configurations, the ions become infinitely polarized. The results of using the PIM1, the PIM1s, as well as those of the simple RIM, have been compared for the static structure and ionic transport properties. The PIM1 reproduces the broad main peak of the total structure factor present in the neutron diffraction data, although the smoothed three-peak feature of this broad peak is slightly overestimated. The structural results for the PIM1s are intermediate between those for the RIM and the PIM1, but fail to reproduce the experimental features within the broad principal peak. Concerning the ionic transport properties, the value of the conductivity obtained using PIM1 is in good agreement with experimental values, while the self-diffusion coefficients and the conductivity for the PIM1s are lower than the corresponding values using the PIM1 and the RIM.
Source arXiv, cond-mat/0606052
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica