Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/0606084

 Article overview



Supersymmetry and Unconventional Quantum Hall Effect in Graphene
Motohiko Ezawa ;
Date 3 Jun 2006
Subject Mesoscopic Systems and Quantum Hall Effect
AbstractWe present a unified description of the quantum Hall effect in graphene on the basis of the 8-component Dirac Hamiltonian and the supersymmetric (SUSY) quantum mechanics. It is remarkable that the zero-energy state emerges because the Zeeman splitting is exactly as large as the Landau level separation, as implies that the SUSY is a good symmetry. For nonzero energy states, the up-spin state and the down-spin state form a supermultiplet possessing the spin SU(2) symmetry. We extend the Dirac Hamiltonian to include two indices $j_{uparrow}$ and $j_{downarrow}$, characterized by the dispersion relation $E(p) propto p^{j_{uparrow}+j_{downarrow}}$ and the Berry phase $pi (j_{uparrow}-j_{downarrow})$. The quantized Hall conductivity is shown to be $sigma_{xy}=pm (2n+j_{uparrow}+j_{downarrow}) 2e^{2}/h$.
Source arXiv, cond-mat/0606084
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica